On monotonic solutions of an integral equation of Volterra type

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Monotonic Solutions of an Integral Equation of Abel Type

We present an existence theorem for monotonic solutions of a quadratic integral equation of Abel type in C[0, 1]. The famous Chandrasekhar’s integral equation is considered as a special case. The concept of measure of noncompactness and a fixed point theorem due to Darbo are the main tools in carrying out our proof.

متن کامل

On existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation

In this paper we investigate the existence and uniqueness for Volterra-Fredholm type integral equations and extension of this type of integral equations. The result is obtained by using the  coupled fixed point theorems in the framework of Banach space $ X=C([a,b],mathbb{R})$. Finally, we  give an example to illustrate the applications of our results.

متن کامل

Hyers-Ulam stability of Volterra integral equation

We will apply the successive approximation method forproving the Hyers--Ulam stability of a linear integral equation ofthe second kind.

متن کامل

Numerical Solutions of a Class of Nonlinear Volterra Integral Equation

We consider numerical solutions of a class of nonlinear (nonstandard) Volterra integral equations. We first prove the existence and uniqueness of the solution of the Volterra integral equation in the context of the space of continuous funtions over a closed interval. We then use one point collocation methods and quadrature methods with a uniform mesh to construct solutions of the nonlinear VIE....

متن کامل

Collocation Solutions of a Weakly Singular Volterra Integral Equation

p(t, s) := s tμ , (1.2) where μ > 0, K(t, s) is a smooth function and g is a given function, can arise, e.g., in heat conduction problems with mixed boundary conditions ([2], [10]). The case when K(t, s) = 1 has been considered in several papers. The following lemma summarizes the analytical results for (1.1) in the case K(t, s) = 1. Lemma 1.1. (a) [12] Let μ > 1 in (1.2). If the function g bel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2005

ISSN: 0377-0427

DOI: 10.1016/j.cam.2004.04.003